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ABSTRACT: We investigate masses and coupling constants of mesons and nucleons within a
hard wall model of holographic QCD in a unified approach. We first examine an appropri-
ate form of fermionic solutions by restricting the mass coupling for the five dimensional bulk
fermions and bosons. We then derive approximated analytic solutions for the nucleons and
the corresponding masses in a small mass coupling region. In order to treat meson and nu-
cleon properties on the same footing, we introduce the same infrared (IR) cut in such a way
that the meson-nucleon coupling constants, i.e., g-nyn and g,nn are uniquely determined.
The first order approximation with respect to a dimensionless expansion parameter, which
is valid in the small mass coupling region, explicitly shows difficulties to avoid the IR scale
problem of the hard wall model. We discuss possible ways of circumventing these problems.
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1 Introduction

The AdS/CFT correspondence [1-3] that relates a strongly coupled large N, gauge theory
to a weakly coupled supergravity provides a novel approach to understand nonperturbative
features of quantum chromodynamics (QCD) such as the quark confinement and sponta-
neous breakdown of chiral symmetry (SBxS). Though no rigorous proof exists for such a
correspondence in real QCD, this remarkable idea has triggered a great amount of theoret-
ical works on possible mappings from nonperturbative QCD to 5 dimensional (5D) gravity,
i.e. holographic dual of QCD. There are in general two different ways of modeling holo-
graphic dual of QCD (see, for example, a recent review [4]): One way is to construct 10
dimensional (10D) models based on string theory of D3/D7, D4/D6 or D4/D8 branes [5—
9]. The other way is so-called a bottom-up approach to a holographic model of QCD,
also known as AdS (Anti-de Sitter Space)/QCD [10-12] in which a 5D holographic dual is
constructed from QCD based on the general wisdom of AdS/CFT, the 5D gauge coupling
being identified by matching the two-point vector correlation functions. Despite the fact
that this bottom-up approach is somewhat on an ad hoc basis, it reflects some of most
important features of gauge/gravity dual. Moreover, it is rather successful in describing
properties of mesons (see, for example, a recent review [4]).

On the other hand, QCD is not a conformal theory, in particular, in the low-energy
region, so one should also incorporate this property in constructing an effective AdS/QCD
model. Consequently, different models have been developed in this bottom-up approach.
In refs. [10-12], the size of the extra dimension (also known as the compactification scale)
was fixed at the point that corresponds approximately to the QCD scale parameter Aqcp,
i.e., an infrared (IR) cutoff parameter was explicitly introduced. It is usually interpreted as
the confinement scale that also breaks sharply the conformal invariance. These AdS/QCD
models are called the hard-wall model. On the contrary, there is an alternative approach



called a soft-wall model in which the conformal invariance is broken smoothly by introduc-
ing the dilaton background field in the 5D AdS space [13-15].

While both approaches reproduce well meson properties such as masses, Regge trajec-
tories, and so on, one serious problem arises, when it comes to fermions in the AdS/QCD.
In order to describe the fermions, another IR cutoff was introduced in hard-wall mod-
els [16-21]. As shown in ref. [19], one has to introduce the IR cutoff for the nucleon with a
different value from the mesonic case so that one may reproduce the excited nucleon spec-
tra. In fact, ref. [19] used quite a small number for that. However, when one calculates the
meson-nucleon coupling constants, an inconsistency arises [22]. In order to determine the
coupling constants consistently, one must use the same IR cutoff. Otherwise, one cannot
fully consider whole information on meson and nucleon wavefunctions. Thus, in the present
work, we want to investigate the meson and baryon sectors on an equal footing with the
same IR cutoff taken into account. To this end, we consider an anomalous dimension of
baryon operator. We will also rederive the nucleon wavefunctions analytically in such a
way that the analysis on the IR cutoff becomes easier.

The present work is organized as follows: In section 2, we briefly review a hard-
wall model for mesons and nucleons. In section 3, we derive analytically the 5D energy
eigenvalues and wavefunctions for the nucleons. In section 4, we discuss the meson-nucleon
coupling constants. The results are presented and discussed in section 5. The last section
is devoted to summary and conclusion.

2 Hard-wall model with holographic mesons and nucleons

We first briefly review a hard-wall model for mesons and for nucleons, developed in refs. [10,
11] and in ref. [19], respectively. The model has a geometry of 5D AdS

1
ds®* = gyndzMda™ = Z—Q(UMde“dx”—dZQ), (2.1)

where 7, stands for the 4D Minkowski metric: 7, = diag(l,—1,—1,—1). The 5D AdS
space is compactified by two different boundary conditions, i.e. the IR boundary at z = z,,
and the UV one at z = ¢ — 0. Thus, the model is defined in the range: ¢ < z < z,.
Considering the global chiral symmetry SU(2); x SU(2) of QCD, we need to introduce
5D local gauge fields A;, and Agr of which the values at z = 0 play a role of external
sources for SU(2); and SU(2)j currents respectively. Since chiral symmetry is known to
be broken to SU(2),, spontaneously as well as explicitly, we introduce a bi-fundamental
field X with respect to the local gauge symmetry SU(2); x SU(2)p, in order to realize
the spontaneous and explicit breakings of chiral symmetry in the AdS side. The current
quark mass term gzmqr with m = diag(m,, mg) breaks explicitly chiral symmetry, while
its spontaneous breakdown is understood by the finite vacuum expectation value (VEV) of
the quark condensate (gq) that is regarded as an order parameter. Thus, considering these
two, we can construct the bi-fundamental 5D bulk scalar field X in terms of the current
quark mass m, and the quark condensate o

Xo(z) = {X) = 5(myz+05") (2:2)



with isospin symmetry assumed. The current quark mass m, is defined as my = (m,, +
mq)/2.

The 5D gauge action in AdS space with the scalar bulk field and the vector field can
be expressed as

Sy = /dz /d4m\/5Tr [[DX\Q + 3| X% - 2—;2(Ff +F2)|, (2.3)
5

where VG = 1/2°, DX = 09X —iALX 4+ iXAg, and FMY = 0MALp — 0N AL g —
Z[A%/[ R Aﬁ rl- The g5 stands for the 5D gauge coupling and is fixed by matching the
5D vector correlation function to that from the operator product expansion (OPE): gg =
1272 /N,. The 5D mass of the bulk gauge field Ay, g is determined by the relation m2 =
(A —p)(A+p—4) [2, 3] where A denotes the canonical dimension of the corresponding
operator with spin p. The 5D mass of the bulk gauge field turns out to be m% = 0, which is
natural because of gauge symmetry. Note that the vector and axial-vector gauge fields are
defined as V = (Ap + Ag)/v2 and A = (A — AR)/+/2 that are coupled at the boundary
to the vector current J‘C;” = ¢v"t%q and to the axial-vector current J3" = gy/y5t%g with
tr(t?t?) = 0%, respectively. The effective action describes the mesonic sector [10, 11]
completely apart from exotic mesons [23].

Coming to the flavor-two (Np = 2) baryonic sector, one needs to introduce a bulk
Dirac field corresponding to the nucleon at the boundary [18, 21]. A specific hard-wall
model for the nucleon was developed by ref. [19] and was applied to describe the neutron
electric dipole moment [24] and holographic nuclear matter [25]. In this model, the nucleons
are first introduced as a massless chiral isospin doublets (pr, nz) and (pg, ng) in such a
way that the 't Hooft anomaly matching is satisfied. The spontaneous breakdown of chiral
symmetry induces a chirally symmetric mass term for nucleons

Lysp ~ —My (22) ¥ (pr, nr) +h.c., (2.4)

where ¥ = exp(2in?7?/ fr) is the nonlinear pseudo-Goldstone boson field that transforms
as ¥ — ULEU;[2 under SU(2); xSU(2)z. The 7* and fr represent the SU(2) Pauli matrices
and the pion decay constant, respectively. Thus, we have to consider the following mass
term in the AdS side
L = —g (pL> X (pr, ng) + h.c., (2.5)
nr
where g denotes the mass coupling (or Yukawa coupling) between X and nucleon fields,
which is usually fitted by reproducing the nucleon mass My = 940 MeV. In this regard,
we can introduce two 5D Dirac spinors N; and Ny of which the Kaluza-Klein (KK) modes
should include the excitations of the massless chiral nucleons (pr, ny) and (pr, ng), re-
spectively. By this requirement, one can fix the IR boundary conditions for Ny and No
at z = z,.
Note that the 5D spinors Nio do not have chirality. However, one can resolve this
problem in such a way that the 4D chirality is encoded in the sign of the 5D Dirac mass



term. For a positive 5D mass, only the right-handed component of the 5D spnior remains
near the UV boundary z — 0, which plays the role of a source for the left-handed chiral
operator in 4 dimension. It is vice versa for a negative 5D mass. The 5D mass for the
(d + 1) bulk dimensional spinor is determined by the AdS/CFT expression

(ma)? = (- g) (2.6)

Since the nucleon consists of three valence quarks, the corresponding ms turns out to be
ms = 5/2. However, since QCD does not have conformal symmetry in the low-energy
regime, the 5D mass might acquire an anomalous dimension due to a 5D renormalization
flow. Though it is not known how to derive it, we will introduce later some anomalous
dimention of the ms to see its effects on the spectrum of the nucleon.

Considering all these facts, we are led to the 5D gauge action for the nucleons

Sy = /dz /d4$\/aT1“[EK+E[],

_ _ 5 - 5 -
Lk = iNTMV Ny + iNaTMV Ny — 5NNz + S No N,y
L1 = —g |:N1XN2 +N2XTN1:| R (27)
where )
i .
Vv = 3M+wa/IBPAB—ZA%/[. (2.8)
The non-vanishing components of the spin connection are w;r’\;[“ = —wf/f = 5]‘?/[ /z and
Tap = 3[4, T'B] are the Lorentz generators for spinors. The I' matrices in AdS are

related to the 4D ~ matrices as T'™ = (y#, —i~s).

3 Energy eigenvalues and eigenfunctions for nucleons

Since the mesonic sector is well studied in refs. [10, 11], we concentrate in this work on
the nucleon properties from the AdS/QCD model. In order to find the mass spectrum of
4D nucleons, we have to solve the eigenvalue equations that arise from expanding N; and
Ns in terms of the KK eigenmodes. Decomposing the N; and N fields into the following

separable forms

Ni(z,2) = fic(2)¥n(z) + fir(2)Yr(z),
No(z,2) = for.(2)¥r(x) + for(2)YR(x), (3.1)

where 91, r denote the components of the 4D eigen-spinors ¢ = (¢, ¥ r)T with eigenvalues
p, we obtain the coupled equations for fi7 1z and fir2r

0. — A5 —¢(2) firy _ [ fir

( —¢(2) 3Z—A7> (fQL) B p<f2R> ’ (3:2)
9. — 2 4(2) he\ _ | fic

< é(2) 5z—A7+> (fQR) _p<f2L> (3:3)



with the IR boundary conditions fir(z,) = for(zm) = 0, where AT = 2+ mj and
b(2) = gXo(2)2 1.

The left-handed eigenfunctions fi7,27, can be related to the right-handed ones fir2r
for given parity states. Introducing the eigenvalues of the parity operator P = +1, we can
write the relations [19]

for=—Phr,  for=Pht. (3.4)
Eq. (3.4) being used, egs. (3.2) and (3.3) are reduced to

(-2 ) e =~ + ol (35

(0: ) fin = 0= Porsu. (3.6
These can be further decoupled as

P+ AR+ (0~ BE)f =0, @)

where f represents generically fi7, and fig. The f’ and f” are the first- and second-order
derivatives with respect to z. The functions A and B are defined as

A(z) = =0, In [(p + P¢)2A_+A+] , (3.8)

1 P¢'A*
B(z) = ¢~ 5 (AAT AT ©

7(17 TP (3.9)

The function f in eq. (3.7) satisfies, respectively the UV and the IR boundary conditions
fL(e = Zyv — O) = O, fR(Zm = ZIR) = 0, (3.10)

which comes from the minimization of the action [16] and zeros of the right solutions fgr
will be used to generate the mass spectrum of the nucleons.
Since eq. (3.7) can be put into an equation of the Sturm-Liouville type, we can write

its solution in the form of!
f(z) = Z(2)exp {—% /Z A(z)dz} = 7(2)2*\/p £ P¢. (3.11)

Thus, we can consider eq. (3.7) as a simple quantum-mechanical 1D potential-well problem.
Furthermore, introducing the following dimensionless variable and parameters

w = zz

- g ~
SN mq:—qum’ 0'250'2%, P =DPZm, (312)

we immediately obtain the dimensionless form of eq. (3.7)

2" (w) + (5 — U(w)) Z(w) = 0, (3.13)

!We remark here that a similar method has been used in [26].



where the effective potential is defined as

U=U+ U, (3.14)
(m5 + 1)m5 Po ~

U=~ ?(2m5 +1) +my, (3.15)

7 (mg + ow?)
U =4+——21 2ms + 1
LS E 5% P, + 5u?) Y
3~2 2
n ow + (2 + 5w?)Fuw? . (3.16)

(p £ P(mg + dw?))?

Having examined the form of the solution given in eq. (3.11) and the potential in
eq. (3.14)-(3.16), we find that the parameters 1, and & (and consequently g) are restricted
by the singularity of the potential U; and by the structure of the corresponding even- or
odd-parity solutions. Accordingly, the input parameters are restricted as follows:

9]

- . 2p
|mg + 0| = =(mq + 022)2m < P or lg| < 5 < Jerit - (3.17)

2 mg + 025,

Thus, we are able to restrict the mass coupling ¢ in the present approach. Note that if one
restricts the value of g by fitting it to the mass of the lowest state p; = N(940), which is

given as
2p1

L —— 3.18
mg + 022, Jerit (3.18)

then the singularity in the potential for all other states can be excluded. The meaning
of the parameter-restriction condition can be easily understood. It measures the amount
of the corrections to the energy states when chiral symmetry is broken, as obviously seen
from egs. (3.5)—(3.6).

We now examine two different limiting cases in the mass coupling: the limit of the
small mass coupling |g| ~ 0 and the limit of the strong mass coupling |g| =~ gerit. While
in the limit of the small mass coupling the mass spectrum of the nucleons are almost the
same as those in the restored phase of chiral symmetry, the changes in the spectrum turn
out to be rather large in the opposite limit. A similar situation was already studied in the
Nambu-Jona-Lasinio model [27] (see also relevant reviews [28, 29]).

The normalizable zero-mode solutions in the chirally symmetric phase is discussed in
ref. [19]. After the spontaneous breakdown of chiral symmetry, one still has zero modes for
fermions. To analyze this point, let us for the moment neglect the quark mass (mgy = 0)
and look for the zero-mode solutions. One can easily find that the zero-mode equation has
the form

2
7" (w) — {”—2 + 62w4} Zw)=0, n*=(msF)msF (2ms+1)+3. (3.19)
w
This equation can be solved analytically and has the solution

Z(w) = w'/? [C11 g 25/2(0w) + CoK 50 (6w)] (3.20)



where I,,,,+3/2 and K, -3/, represent the modified Bessel functions. Taking into account
eq. (3.11), we obtain the general zero-mode solution

flw) = w? 2/ + P&w? [Cl 5¢3/2(aw) + CoK g 3/2(Gw )] , (3.21)

which is proportional to the square root of the 5D mass coupling. One can save or kill
the left- or the right-handed zero modes by appropriately choosing the sign of the mass
coupling g.

If the conditions in eq. (3.17) are well satisfied, U; can be considered as a small per-
turbation of order O(62/p?).2 To the first order, i.e., when U; = 0, the problem can be
solved analytically, so that

Z(w) = w? (CJpz1j2(apw) + DYy 21 9 (apw)) (3.22)
P
b = 5+ ?0(27”5 +1) — 2, (3.23)

where Jy, 412 and Y, 41 /5 are the Bessel functions of the first and the second kinds,
respectively. In order to get the finite solutions at the UV boundary, the coefficients Dy, r
must vanish.? The energy levels of the states with a given parity correspond to the right-
handed solutions (see eq. (3.10)). Consequently, one is led to the algebraic equations

pn = ap(Bn), (3.24)

where fi,, is the n'" zero of the Bessel function, i.e., Ims+1/2(tn) = 0. Equation (3.23)
has a prominent meaning. Since p gives in general the whole spectrum of the nucleon,
one can immediately find that the mass of the first excited state with positive parity turns
out to be smaller than that with negative parity. Thus, eq. (3.23) is consistent with the
experimental data. That is, the ordering of the nucleon spectrum is analytically explained
in this method.

The calculations of the next-order corrections are straightforward and can be done
by using the expansion parameters, m,/p and &/p, and by expressing the potential U; in
the form

U(R) = (2, + w?)ow?® — 5 [(2ms — 1)(my + ow 2y~ 35102}

’Uz|q1

M)n (3.25)

~ o0

o

]? E 3(n + 1)ew? — (g + 6w?)(2ms — 1)] < 5
It will be shown that the corrections are rather small, so that this approximation works

very well.

2See eq. (3.25). It is obvious that 1 /p < &/p.
3The value of the UV boundary is taken to be zero in the present approach, i.e., zuv = 0.



4 Meson-baryon couplings

Following ref. [11], one introduces the gauge-fixing terms

1

V pr— —
Lo = L [0, VH — Evhy(Vs, 2))?, (4.1)
1
Lyt = ~SErglz 0,48 — €4 (h1 (A5, 2) + ha(X, 2))]” (4.2)

and can find an explicit form of the functions hi 2 as done in refs. [19, 22]. In the unitary
gauge {4y — oo the fifth component of the vector field V5 = (Ls+ R5)/2 becomes infinitely
heavy, so that it is decoupled from the theory. Analogously, the linear combination of the
fifth component of the axial-vector field A, = (L5 — R5)/2 and the bi-fundamental scalar
field X = vexp{iP} components v and P becomes infinitely massive. Introducing the
corresponding relation between hq(As, z) and ho(X, z) one can keep that linear combination
massless. As a result the massless pions can be described. The corresponding equation for
the pion mode function can be analytically integrated in the chiral limit and has the form

I/5(9502,/3)
172/3(g502m/3

23

Jr= No [12/3(95023/3)

) —2/3(95023/3)] ) (4.3)

where I5/3 are the modified Bessel functions. The normalization condition for the pion
mode function is fixed by a canonical form of the kinetic term for the pion fileds

Zm 1 5 23 f7r 2 -
/0 * [29?,sz " 8XZ (az <7>> ] - 44

Once the pion fields are correctly identified, then the 7NN coupling can be calculated as

Gx N () N() :/o dZ— {fn( n)*f1 (z)*fz(?%))

2
_2}(}(2952) 0 (fw>( 1L - 157 )} : (4.5)

z

Similarly, the pNN coupling has the form of [22]

zm 1 n n
JpN)N(n) = /0 dzg [fp + Czazfp] [’ffL)‘Z + ‘f1(R)’2} > (4-6)

where c is the constant of order in unity and the normalized p meson wave function has

the following form
zJ1(mpz)

(Jom dzz[ )y (mpz)]Q)l/2 .

For completeness, we remind here the normalization condition for the mode functions of

/0 S (AP +1AP) =1 :/0 SRR+ 1R (48)

fo= (4.7)

the baryons



5 Results and discussions

We now present the results of this work and discuss them. Most of input parameters of the
model such as mg, o and z,, are quite well fitted in the mesonic sector [10]. Hence, we have
only one free parameter g to reproduce the data in the baryonic sector. However, the IR
cutoff z,, in the baryonic sector, which is often interpreted as a scale of the confinement,
takes different values from those in the mesonic sector. Actually, ref. [19] performed two
different fittings of these parameters. In the first fitting of ref. [19], the z,, and the o were
fixed in the mesonic sector, and the ¢ is fitted to the nucleon mass. In the second fitting,
the 2, and the g were taken respectively to be (205MeV)~! and 14.4 such that the masses
of the nucleon and the Roper resonance N(1440) were reproduced. Since there is no reason
for a nucleon to have the same scale of the confinement as that for a meson, this might
be an acceptable argument as far as one treats mesons and baryons separately. However,
there is one caveat. When it comes to some observables such as the meson-baryon coupling
constants, we need to treat the mesons and baryons on the same footing and require
inevitably a common z,,. Otherwise, we are not able to consider whole information on
both mesons and baryons. Moreover, a model uncertainty brings on by the mass coupling
g. Thus, in the present section, we will carry out the numerical analysis very carefully,
keeping in mind all these facts.

We first take different values of the z, from those in the mesonic sector and try to fit the
data as was done in ref. [19]. In this case, o is defined as o = 4v/2(g523,) . Furthermore,
we will examine two different limits of the mass coupling g: In the limit of the small mass
coupling, there are three free parameters mg, g and z,,. All other parameters can be related
t0 2zpy,. On the other hand, in the limit of the strong mass coupling, the g can be fixed
by eq. (3.18), which leaves only two free parameters. Obviously, the dependence on the
current quark mass m, must be tiny because of its smallness, so we can simply neglect it.
In this case, we have only one free parameter.

The results of the calculations are listed in table 1. In the first part of the table,
we present the results in the limit of the strong mass coupling. They are more or less
the same as those obtained in ref. [19]. For comparison, we list the results for the small
mass coupling in the middle part of table 1, and those of the leading-order approximation
(see eq. (3.24)) in the last part, respectively. The mass coupling g is chosen to be 6 in
both cases. While the spectrum of the nucleon seems to be qualitatively well reproduced,
that of the p meson is fairly underestimated in comparison with the experimental data.
In the case of the strong mass coupling, the situation becomes even worse. However, as
dictated by eq. (3.23), the ordering of the nucleon-parity states are correctly reproduced
for 0 < g < Gerit -

The results listed in table 1 indicate that it is not possible to reproduce the spectra
of the p meson and the nucleon at the same time.? As an attempt to improve the above-
presented results, we want to introduce an anomalous dimension of the 5D nucleon mass.

4Note that in the present work we do not aim at the fine-tuning of the parameters to reproduce the
experimental data. The output data in baryonic sector is quite stable for changes in o.



ms  zpt o3 my g (p,n)t NT(1440) N7(1535) p(776) p(1475)
The exact numerical results (the limit of the strong mass coupling)

5/2 130.9* 1264 0 159 940 1336.2 1366.5 314.8 722.6

5/2 129.7* 125.2 3" 157 940 1328.2 1357.5 311.8 715.7

5/2 126.0* 121.7 10* 154 940 1304.6 1331.9 303.0 695.5
The exact numerical results (the case of the small mass coupling)

5/2 147.2* 1421 0  6.0* 940 1440.3 1456.6 354.0 812.6

5/2 147.0* 1419 3* 6.0* 940 1439.3 1455.6 353.5 811.5

5/2 146.3* 141.3 10* 6.0* 940 1434.6 1451.0 351.8 807.6

The leading order approximation (the case of the small mass coupling)

5/2 147.2* 1421 0  6.0* 919 1428.4 1445.1 354.0 812.6

5/2 147.0* 1419 3* 6.0* 918 1426.5 1443.1 353.5 811.5

5/2 146.3* 141.3 10* 6.0* 914 1415.0 1436.6 351.8 807.6

Table 1. The results of the spectra of the nucleon and the p meson. In the limit of the small
mass coupling, there are three free parameters my, g and z,,, while in the limit of the strong
mass coupling, the g is fixed near its critical value (see eq. (3.18)). All dimensional quantities are
expressed in units of MeV. The asterisks indicate input parameters. The parameter o is defined
as o = 4\/5(952;9;1)_1. The results of the leading-order approximation are yielded according to
eq. (3.24). The 5D nucleon mass ms is given by the AdS/CFT, eq. (2.6).

ms  zpt B mg g (p,n)T NT(1440) N—(1535) p(776) p(1475)
Model A

323* 3277 229* -1.5 1009 2029 2036 776 1783

1 323* 3277 229 1 1449 2495 2498 776 1783

323* 3277 229 2.1 1853 2936 2949 776 1783

5/2 323 327F 229 25 2050 3150 3168 776 1783
Model B

346* 308 2.30° -2.4 1081 2031 2040 832 1910

1 346 308* 230 1.3 1553 2494 2499 832 1910

346*  308* 2.30* 3.1 1985 2937 2952 832 1910

5/2 346* 308* 230" 3.6 2196 3151 3172 832 1910

Table 2. The results of the spectra of the nucleon and the p meson with the 5D mass ms varied in
the range of 0 < mjs < 5/2. The mass coupling ¢ is fitted to the spectrum of the nucleon. All other
parameters are taken from ref. [10]. All dimensional quantities are presented in units of MeV. The
asterisks indicate input parameters. Two different sets of input parameters are used as in ref. [10].

Note that the 5D mass of the bulk vector field does not acquire any anomalous dimension
because of the gauge symmetry.

Table 2 lists the results of calculations for different values of the 5D mass ms, whereas
the z,, the o, and m, are fitted to the mesonic sector. Note that here the nucleon mass
is not used as an input. Varying the value of g, we try to fit the spectrum of the nucleon.
We present the results from two different parameter sets called model A and model B. In
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1 ,1/3

g (pn)* N* N~ p P GrNN  YoNN

(939)  (1440) (1535) (776) (1475) (13.1) (2.4)
285% 256* -2.0° 890 1791 1797 685 1573  1.65 1.39
285% 237* -2.0* 890 1790 1796 685 1573  1.76  1.39
285* 256* -8.0* 930 1826 1856 685 1573  4.89  1.34
285* 237* -8.0* 920 1817 1843 685 1573 512  1.35
285% 227 -9.6* 930 1826 1856 685 1573  6.12  1.34
280* 252* -2.0* 874 1760 1765 673 1546  1.65 1.39

280 233" -2.0" 874 1759 1764 673 1546 1.76 1.39

Table 3. The results of the spectra of the nucleon and the p meson and the tNN and pNN
coupling constants. The parameters z,,, o, and g are found by the global fitting procedure. The
anomalous dimension of the 5D nucleon mass is chosen in such a way that the 5D mass vanishes.
All other definitions are the same as in tables 1 and 2.

this analysis, we take the values of the z,, and o from ref. [10]. Note that the p meson
mass is used as an input in model A, while model B corresponds to the global fitting done
in ref. [10]. The 5D nucleon mass is varied in the range of 0 < ms < 5/2, its anomalous
dimension being considered as mentioned before. As shown in table 2, the best result
is obtained with ms = 0. Though the absolute values of the nucleons turn out to be
overestimated in contrast to the previous analysis presented in table 1, the ground-state
masses of the nucleon and the p meson are qualitatively well reproduced within 30%.

We are now in a position to include meson-baryon coupling constants in the present
numerical analysis. We will consider here the 7 NN and the pNN coupling constants in
addition to the p meson and the nucleon spectra. One has to keep in mind that in order
to calculate the meson-baryon coupling constants it is essential to use the same z,, for the
mesonic and baryonic sectors. Otherwise, it is not possible to keep whole information on
the wavefunctions. Thus, it is of utmost importance to compute all observables with the
same set of parameters. We perform a global fitting procedure to obtain the results listed in
table 3. Note that we consider here the chiral limit (m, = 0), since its effects on the results
are rather tiny.” We assume also that the 5D nucleon mass acquires a large anomalous
dimension so that it may vanish, i.e., ms = 0. The best fit is obtained with the parameters
fitted as follows: z,, = (285 MeV)~!, 0 = (227MeV)3, and g = —9.6. The masses of the
ground-state nucleon and the p meson are in good agreement with the experimental data.
Moreover, those of the excited states are qualitatively well reproduced within 10 — 20%.
However, the coupling constants are in general about 50% underestimated. We mention
that in ref. [22] the dependence of the meson-baryon coupling constants on the z,, was
investigated without considering hadron spectra but the results for the coupling constants

are more or less in the same level as in the present work.

®Note that in the chiral limit, the nucleon mass is different from experiments, M, ~ 939 MeV. For
instance, M, ~ 882 MeV in the chiral limit [30].
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6 Summary

We have investigated the mesons and the nucleons in a unified approach, based on a hard-
wall model of AdS/QCD [10, 19]. We first have decoupled the equations of motion for
the nucleons and casted them into the Sturm-Liouville type such that the problem for
the nucleons is reduced to a simple one dimensional quantum-mechanical potential-well
problem. In order to study the nucleon spectrum, we developed an approximated method
in which the effective potential can be expanded. The method of this approximation was
shown to work very well. In particular, the correct ordering of the nucleon parity states
was analytically shown in this method.

We then have carried out various numerical analyses, varying the model parameters
such as the IR cutoff z,,, the quark condensate o, and the mass coupling (or Yukawa
coupling) g. In order to improve the results of the nucleon and the p meson spectra on an
equal footing, we have introduced an anomalous dimension of the 5D nucleon mass. We
found that the zero 5D nucleon mass, A = 2, produces the best results.

We finally have included the 7NN and pNN coupling constants. Upon calculating
the coupling constants, it is essential to use the same z,, for mesons and nucleons, so that
whole information about the wavefunctions are not lost in the course of the calculation.
We have performed the global fitting procedure in which we obtained the best fit with
the values of the parameters: z, = (285MeV)™!, 0 = (227MeV)3, and g = —9.6. The
mass spectra of the nucleon and the p meson are in relatively good agreement with the
experimental data within 10 — 20%, whereas the 7NN and pNN coupling constants are
underestimated by about 50%.

In order to improve the present results, one might consider higher dimensional opera-
tors [31], or a finite UV cutoff [32].
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